Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
J Intern Med ; 293(1): 63-81, 2023 01.
Article in English | MEDLINE | ID: covidwho-20241270

ABSTRACT

BACKGROUND: The durability of SARS-CoV-2 antibody response and the resulting immunity to COVID-19 is unclear. OBJECTIVES: To investigate long-term humoral immunity to SARS-CoV-2. METHODS: In this nationwide, longitudinal study, we determined antibody response in 411 patients aged 0-93 years from two waves of infections (March to December 2020) contributing 1063 blood samples. Each individual had blood drawn on 4-5 occasions 1-15 months after disease onset. We measured total anti-SARS-CoV-2 receptor-binding domain (RBD) antibody using a qualitative RBD sandwich ELISA, IgM, IgG and IgA levels using an quantitative in-house ELISA-based assay  and neutralizing antibodies (NAbs) using an in-house ELISA-based pseudoneutralizing assay. IgG subclasses were analyzed in a subset of samples by ELISA-based assay. We used nonlinear models to study the durability of SARS-CoV-2 antibody responses and its influence over time. RESULTS: After 15 months, 94% still had detectable circulating antibodies, mainly the IgG isotype, and 92% had detectable NAbs. The distribution of IgG antibodies varied significantly over time, characterized by a biphasic pattern with an initial decline followed by a plateau after approximately 7 months. However, the NAbs remained relatively stable throughout the period. The strength of the antibody response was influenced by smoking and hospitalization, with lower IgG levels in smokers and higher levels in hospitalized individuals. Antibody stability over time was mainly associated with male sex and older age with higher initial levels but more marked decrease. CONCLUSIONS: The humoral immune response to SARS-CoV-2 infection varies depending on behavioral factors and disease severity, and antibody stability over 15 months was associated with sex and age.


Subject(s)
COVID-19 , Humans , Male , Longitudinal Studies , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G , Denmark , Immunity
2.
Vaccine ; 41(20): 3292-3300, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2292542

ABSTRACT

OBJECTIVES: Vaccine effectiveness against transmission (VET) of SARS-CoV-2-infection can be estimated from secondary attack rates observed during contact tracing. We estimated VET, the vaccine-effect on infectiousness of the index case and susceptibility of the high-risk exposure contact (HREC). METHODS: We fitted RT-PCR-test results from HREC to immunity status (vaccine schedule, prior infection, time since last immunity-conferring event), age, sex, calendar week of sampling, household, background positivity rate and dominant VOC using a multilevel Bayesian regression-model. We included Belgian data collected between January 2021 and January 2022. RESULTS: For primary BNT162b2-vaccination we estimated initial VET at 96% (95%CI 95-97) against Alpha, 87% (95%CI 84-88) against Delta and 31% (95%CI 25-37) against Omicron. Initial VET of booster-vaccination (mRNA primary and booster-vaccination) was 87% (95%CI 86-89) against Delta and 68% (95%CI 65-70) against Omicron. The VET-estimate against Delta and Omicron decreased to 71% (95%CI 64-78) and 55% (95%CI 46-62) respectively, 150-200 days after booster-vaccination. Hybrid immunity, defined as vaccination and documented prior infection, was associated with durable and higher or comparable (by number of antigen exposures) protection against transmission. CONCLUSIONS: While we observed VOC-specific immune-escape, especially by Omicron, and waning over time since immunization, vaccination remained associated with a reduced risk of SARS-CoV-2-transmission.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Bayes Theorem , Belgium/epidemiology , Contact Tracing , Vaccine Efficacy , Immunization, Secondary
3.
Int J Infect Dis ; 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2237096

ABSTRACT

OBJECTIVES: We examined the incremental protection and durability of infection-acquired immunity against Omicron infection in individuals with hybrid immunity in Ontario, Canada. METHODS: We followed up six million Individuals with at least one RT-PCR test before November 21, 2021 until an Omicron infection. Protection via infection-acquired immunity was assessed by comparing Omicron infection risk between previously infected individuals and those without documented infection under different vaccination scenarios and stratified by time since last infection or vaccination. RESULTS: A prior infection was associated with 68% (95%CI 61-73) and 43% (95%CI 27-56) increased protection against Omicron infection in individuals with two and three doses, respectively. Among individuals with two-dose vaccination, the incremental protection of infection-induced immunity decreased from 79% (95%CI 75-81) within 3 months after vaccination or infection to 27% (95%CI 14-37) at 9-11 months. In individuals with three-dose vaccination, it decreased from 57% (95%CI 50-63) within 3 months to 37% (95%CI 19-51) at 3-5 months after vaccination or infection. CONCLUSION: Previous SARS-CovV-2 infections provide added cross-variant immunity to vaccination. Given the limited durability of infection-acquired protection in individuals with hybrid immunity, its influence on shield-effects at population level and reinfection risks at individual level may be limited.

SELECTION OF CITATIONS
SEARCH DETAIL